• Homepage
  • Navigation
  • Search
  • Content
  • Footer
  • Contact
  • Sitemap

Machine Learning & Computational Biology Lab

Main Navigation

  • News
  • Karsten Borgwardt
    • Karsten BorgwardtSee overview
    • CV - Karsten Borgwardt
    • In the news
  • Research
    • ResearchSee overview
    • Machine Learning
      • Graph Kernels
      • Significant Pattern Mining
      • Nonlinear Measures of Statistical Dependence (Maximum Information Dimension)
      • Rapid Outlier Detection
      • Kernel Method for the Two Sample Problem
      • Confounder-corrected Classification with Support Vector Machines
      • Significant Pattern Mining (Westfall-Young Light)
      • Significant Pattern Mining with Covariates (FACS)
      • Multi-view Spectral Clustering on Conflicting Views
      • Kernel Conditional Clustering
      • add Display all
    • Bioinformatics and Computational Biology
      • Epistasis tools
      • easyGWAS
      • LMM-Lasso
      • SConES
      • Multi-SConES
      • Structural Variant Machine (SV-M)
      • Protein Function Prediction via Graph Kernels
      • Pathogenicity Prediction
      • Multi-Locus Mapping of Genetic Heterogeneity (FAIS)
      • In silico Phenotyping
      • Genetic Heterogeneity Discovery (FastCMH)
      • all-GWAS: Virtual Machine
      • Combinatorial Association Mapping
      • add Display all
    • Personalized Medicine
      • Machine Learning for Personalized Medicine
      • Personalized Swiss Sepsis Study
      • Machine Learning Frontiers in Precision Medicine
  • Teaching
    • TeachingSee overview
    • Data Mining I
    • Data Mining II
    • Student thesis
    • Previous courses
    • Tutorials and workshops
      • Tutorial at ISMB 2018
      • Workshop at D-BSSE retreat 2019
  • Publications & Awards
    • Publications & AwardsSee overview
    • Publications
    • Preprints
    • Books
    • Awards
      • Krupp Award 2013
    • PhD theses

Search

EN

Departments

  • ETH Zurich
  • D-BSSE
  • MLCB Lab

Language Selection

  • English

You are here

  • Homepage chevron_right
  • News chevron_right
  • …
  • MLCB news archive chevron_right
  • 2016 chevron_right
  • 08

08

Paper accepted for NIPS 2016

NIPS logo

Our most recent work in Significant Pattern Mining by Laetitia, Felipe, Dean and Karsten was accepted at NIPS 2016!

12.08.2016 by Katharina Heinrich

Footer

Search

Services

  • Student portal
  • Alumni association
  • Staffnet
  • Contact
  • Login

Departments

  • D-ARCH Architecture
  • D-BAUG Civil, Environmental and Geomatic Engineering
  • D-BIOL Biology
  • D-BSSE Biosystems Science and Engineering
  • D-CHAB Chemistry and Applied Biosciences
  • D-EAPS Earth and Planetary Sciences
  • D-GESS Humanities, Social and Political Sciences
  • D-HEST Health Sciences and Technology
  • D-INFK Computer Science
  • D-ITET Information Technology and Electrical Engineering
  • D-MATH Mathematics
  • D-MATL Department of Materials
  • D-MAVT Mechanical and Process Engineering
  • D-MTEC Management, Technology and Economics
  • D-PHYS Physics
  • D-USYS Environmental Systems Science

Table of contents and legal

  • Sitemap
  • Imprint
  • Accessibility Statement
  • Disclaimer & Copyright
  • Privacy Policy
© 2025  Eidgenössische Technische Hochschule Zürich
JavaScript has been disabled in your browser