• Homepage
  • Navigation
  • Search
  • Content
  • Footer
  • Contact
  • Sitemap

Machine Learning & Computational Biology Lab

Main Navigation

  • Homepage
  • News
  • Karsten Borgwardt
    • To homepage
    • Main menu
    • Karsten BorgwardtSee overview
    • CV - Karsten Borgwardt
    • In the news
  • Research
    • To homepage
    • Main menu
    • ResearchSee overview
    • Machine Learning
      • To homepage
      • Research
      • Machine LearningSee overview
      • Graph Kernels
        • To homepage
        • Machine Learning
        • Graph KernelsSee overview
        • graphkernels: R and Python packages for graph comparison
        • Halting in Random Walk Kernels
        • Scalable kernels for graphs with continuos attributes
        • Weisfeiler-Lehman Graph Kernels
        • Graph Kernels
        • Graph Kernels Survey
      • Significant Pattern Mining
      • Nonlinear Measures of Statistical Dependence (Maximum Information Dimension)
      • Rapid Outlier Detection
      • Kernel Method for the Two Sample Problem
      • Confounder-corrected Classification with Support Vector Machines
      • Significant Pattern Mining (Westfall-Young Light)
      • Significant Pattern Mining with Covariates (FACS)
      • Multi-view Spectral Clustering on Conflicting Views
      • Kernel Conditional Clustering
      • Display allDisplay less
    • Bioinformatics and Computational Biology
      • To homepage
      • Research
      • Bioinformatics and Computational BiologySee overview
      • Epistasis tools
      • easyGWAS
      • LMM-Lasso
      • SConES
      • Multi-SConES
      • Structural Variant Machine (SV-M)
      • Protein Function Prediction via Graph Kernels
      • Pathogenicity Prediction
      • Multi-Locus Mapping of Genetic Heterogeneity (FAIS)
      • In silico Phenotyping
      • Genetic Heterogeneity Discovery (FastCMH)
      • all-GWAS: Virtual Machine
      • Combinatorial Association Mapping
      • Display allDisplay less
    • Personalized Medicine
      • To homepage
      • Research
      • Personalized MedicineSee overview
      • Machine Learning for Personalized Medicine
      • Personalized Swiss Sepsis Study
      • Machine Learning Frontiers in Precision Medicine
  • Teaching
    • To homepage
    • Main menu
    • TeachingSee overview
    • Data Mining I
    • Data Mining II
    • Student thesis
    • Previous courses
    • Tutorials and workshops
      • To homepage
      • Teaching
      • Tutorials and workshopsSee overview
      • Tutorial at ISMB 2018
      • Workshop at D-BSSE retreat 2019
  • Publications & Awards
    • To homepage
    • Main menu
    • Publications & AwardsSee overview
    • Publications
    • Preprints
    • Books
    • Awards
      • To homepage
      • Publications & Awards
      • AwardsSee overview
      • Krupp Award 2013
    • PhD theses

Services

  • Student portal
  • Alumni association
  • Staffnet
  • Contact
  • Login

Search

EN

Departments

  • ETH Zurich
  • D-BSSE
  • MLCB Lab

Language Selection

  • English

Sitemap

  • News
  • Karsten Borgwardtadd
    • CV - Karsten Borgwardt
    • In the news
  • Researchadd
    • Machine Learningadd
      • Graph Kernelsadd
        • graphkernels: R and Python packages for graph comparison
        • Halting in Random Walk Kernels
        • Scalable kernels for graphs with continuos attributes
        • Weisfeiler-Lehman Graph Kernels
        • Graph Kernels
        • Graph Kernels Survey
      • Significant Pattern Mining
      • Nonlinear Measures of Statistical Dependence (Maximum Information Dimension)
      • Rapid Outlier Detection
      • Kernel Method for the Two Sample Problem
      • Confounder-corrected Classification with Support Vector Machines
      • Significant Pattern Mining (Westfall-Young Light)
      • Significant Pattern Mining with Covariates (FACS)
      • Multi-view Spectral Clustering on Conflicting Views
      • Kernel Conditional Clustering
    • Bioinformatics and Computational Biologyadd
      • Epistasis tools
      • easyGWAS
      • LMM-Lasso
      • SConES
      • Multi-SConES
      • Structural Variant Machine (SV-M)
      • Protein Function Prediction via Graph Kernels
      • Pathogenicity Prediction
      • Multi-Locus Mapping of Genetic Heterogeneity (FAIS)
      • In silico Phenotyping
      • Genetic Heterogeneity Discovery (FastCMH)
      • all-GWAS: Virtual Machine
      • Combinatorial Association Mapping
    • Personalized Medicineadd
      • Machine Learning for Personalized Medicine
      • Personalized Swiss Sepsis Study
      • Machine Learning Frontiers in Precision Medicine
  • Teachingadd
    • Data Mining I
    • Data Mining II
    • Student thesis
    • Previous courses
    • Tutorials and workshopsadd
      • Tutorial at ISMB 2018
      • Workshop at D-BSSE retreat 2019
  • Publications & Awardsadd
    • Publications
    • Preprints
    • Books
    • Awardsadd
      • Krupp Award 2013
    • PhD theses

Footer

Search

Services

  • Student portal
  • Alumni association
  • Staffnet
  • Contact
  • Login

Departments

  • D-ARCH Architecture
  • D-BAUG Civil, Environmental and Geomatic Engineering
  • D-BIOL Biology
  • D-BSSE Biosystems Science and Engineering
  • D-CHAB Chemistry and Applied Biosciences
  • D-EAPS Earth and Planetary Sciences
  • D-GESS Humanities, Social and Political Sciences
  • D-HEST Health Sciences and Technology
  • D-INFK Computer Science
  • D-ITET Information Technology and Electrical Engineering
  • D-MATH Mathematics
  • D-MATL Department of Materials
  • D-MAVT Mechanical and Process Engineering
  • D-MTEC Management, Technology and Economics
  • D-PHYS Physics
  • D-USYS Environmental Systems Science

Table of contents and legal

  • Sitemap
  • Imprint
  • Accessibility Statement
  • Disclaimer & Copyright
  • Privacy Policy
© 2025  Eidgenössische Technische Hochschule Zürich
JavaScript has been disabled in your browser